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A recent analysis by Gupta (1967) suggests that a layer of elastico-viscous fluid 
at rest between parallel plane boundaries may be in unstable equilibrium. This 
surprising result is attributable to the inadequacy of the constitutive equation 
adopted by Gupta as the basis for his analysis. An alternative constitutive 
relation, which takes account of the entire strain-history of the motion, leads to  
the more reasonable result that the equilibrium is stable whenever the fluid has 
a ‘fading memory’. 

1 .  Introduction 
Gupta (1967) has recently examined the stability of a film of elastico-viscous 

fluid flowing down an inclined plane. In  his analysis, Gupta employed the Rivlin- 
Ericksen constitutive equation for a second-order incompressible fluid (see, for 
example, Markovitz & Coleman 1964). In  addition to solving the stability problem 
for surface disturbances, he found that ‘shear waves’ were unstable a t  small 
Reynolds numbers and at  small wave-numbers, although Yih (1963) has shown 
that the latter disturbances are highly damped in ordinary Newtonian fluids. 

In  the approximate analysis for ‘shear waves’ at low Reynolds numbers, the 
Rivlin-Ericksen constitutive equation simplifies to the linear form 

where Sij is the stress tensor, eij  is the rate-of-strain tensor, Jij is the Kronecker 
delta, p is an indeterminate pressure and T ~ ,  y are material constants. For a two- 
dimensional periodic disturbance of (prescribed) wave-number k and x, t-depen- 
dence of the form exp ( ikx+  at), the resultant eigenvalue problem for ‘shear 
waves ’ is specified by the equation 

(02-a2)(02+h2)@ = 0, 

and the boundary conditions 

$ = D @ = O ,  y =  + 1 .  

Here, q5 E $(y) and D = d/dy;  a is a dimensionless wave-number equal to kd,  
where 2d is the film thickness, and h is given by 

3 
h2 = -a2-RR,/(1 + MR,),  
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where 

andp is the fluid density (see 3 5 of Gupta’s paper). 
Provided we accept the constitutive equation (l.l),  the above eigenvalue 

problem is precisely that for a fluid layer at rest between parallel plane boundaries 
which experiences a small periodic disturbance. 

The even solutions of $(y) lead to the eigenvalues 

R, = -(hi+a2)/[1+M(hi+a2)], (1.2) 

where A, (n = 1,2,  . . .) is one of the infinite number of real roots of the equation 

h tan h = -a tanh a. 

The eigenvalues for the odd solutions may also be shown to satisfy (1.2), where 
the A, are roots of h cot h = a coth a 

(1.3) 

(1.4) 

(note that the degenerate case h = a = 0 is not a solution of the eigenvalue prob- 
lem). Since y and hence M are known to be negative (see Markovitz & Coleman), 
equation (1.2) reveals that there must exist positive values of R, which corre- 
spond to temporally amplified disturbances. (The result for an ordinary New- 
tonian fluid is recovered on setting M equal to zero: R, is then always negative.) 
We observe that the growth rates predicted by equation (1.2) always satisfy the 
inequality cr > Iro/yl, and that, if M approaches - (h;+a2)-l, the growth rate 
becomes indefinitely large. 

This instability was also noted in an earlier paper by Coleman, Duffin & Mizel 
(1965). Their paper is primarily a contribution to the theory of partial differential 
equations, but the authors indicated the relevance of this particular result to the 
theory of second-order fluids. Whereas Gupta concluded that the elastico- 
viscous layer was likely to be unstable in practice, Coleman, Duffin & Mizel were 
careful to emphasize that the use of a more general constitutive relation might 
yield different results. Also, in a review article, Pipkin (1966) has described the 
apparent instability as ‘an interesting absurdity which arises when the . . . . . . 
approximation is treated as if it  were exact ’. 

The inadequacy of the constitutive equation ( l . l ) ,  in the present context, 
is best indicated as follows. For a fluid layer which is a t  rest apart from a small 
perturbation with exponential time-dependence, equation ( 1.1) simplifies to 

Sii +pSii = (qo + cry) eii. 11-51 

Now, the eigenvalues for v obtained from equations (1.2)-(1.4) all lead to 
negative values of (v0 + cry); and this implies that the deviatoric stresses have 
the opposite sign to the respective strain-rates. Clearly, no real fluid can possess 
this property: it  implies, for example, that the fluid spontaneously releases 
energy when given an appropriate initial deformation. 

There are other simple rheological models that do not have this limitation. 
For instance, the constitutive equation for Oldroyd’s ‘liquid B ’ (see Oldroyd 



Static stability of an elastico-viscous Jluid 35 

1950) is found to yield only stable solutions to the same problem. In  fact, this 
constitutive equation has been adopted by Wei Lai (1967) and by Gupta & Rai 
(1967) to examine the stability of flow down an inclined plane. 

2. Improved constitutive relation 
A further limitation of the constitutive equation (1.1) is that it  takes little 

account of the strain history of the motion; and this deficiency is shared by Old- 
royd’s ‘liquid B’.  Such models are particularly unreliable for liquids with ‘long 
memories ’ or for high-frequency phenomena. Improvements in this respect are 
the more complicated constitutive equations of Oldroyd (1950) and of Coleman 
& No11 (1961). For linearized motion, the latter authors proposed the relation 
(see also Markovitz & Coleman) 

8, +p& = 2 m(s) [E&- s )  - E,,(t)] as, l: 
where m(s) is a material function of the fluid and Eif(t)  is the infinitesimal strain 
tensor at time t relative to some fixed configwation. Thus, Eij(t-s), 0 < s < co, 
describes the past history of the fluid and m(5) represents the ‘memory’ of the 
fluid at time t ,  of its state at  time t - s. 

If Eij(t  - s )  is expanded as a Taylor series at time t ,  the two leading terms on the 
right-hand side of (2.1) correspond to the right-hand side of ( l . l ) ,  with 

7 0  = - sm(s) as, 2y = jom sZm(s) as. l: (2.2a, b )  

Therefore, for disturbances with sufficiently large characteristic time-scales, 
(1.1) and (2.1) are similar. But, if the time-scale associated with the motion is 
small compared with the time-scale which characterizes the memory of the fluid, 
the higher-order derivatives of the Taylor-series expansion cannot be neglected. 
Since the latter time-scale is typically O( Iy/qol), the relationship (1.5) is likely to 
be a valid approximation to (2.1) only if (cr( < Iqo/y(. This observation empha- 
sizes the shortcomings of the analysis outlined in $1,  since cr was then always 
greater than Iqo/yI. However, it should be noted that the results of Gupta which 
relate to surface waves are likely to  be fairly accurate, in view of their compara- 
tively small frequencies and rates of amplification: it is only the apparent ‘shear- 
wave ’ instability which must be rejected. 

On physical grounds, we may assert that any physically realistic model should 
possess the property that a layer of fluid, a t  rest between horizontal plane rigid 
boundaries, is in stable equilibrium. It is not obvious, a priori, that the con- 
stitutive equation (2.1) yields this result for all material functions m(s). However, 
in the following section, it is shown that the equilibrium is indeed stable for all 
functions m(s) which represent a gradually-fading memory. 

3. The stability problem 

equation (2.1) is 
For a disturbance with time-dependence of the form exp (crt), the constitutive 

Sii + p8,, = 20- le i j ( t )  m(s)  (e-as - 1) ds. 

3-2 
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Also, the equations of motion are 

ptj. = 8.. . = - -+2~- l e . .  aP 23,3 .(t) JI m(s) (e-us- 1)  cis, 
a "3.j  ax, 

vi,j = 0, 

where vi is the fluid velocity and the overdot denotes ajat. 

vorticity ltj = vijj - vj.i and eliminating p by cross-differentiation, we obtain 
It follows from the definition of eij that 2eij,i = vi,ij = V2vi. Introducing the 

pti j  = c r - l V &  m(s) (e-gs - 1) ds. som 

/La 

For a two-dimensional disturbance described by a (dimensionless) stream 
function of the forni $(y'/d) exp ( ikx  + crt), where y'ld = y, the above equation 
reduces to 

with 

(0'- a2) (D2+  A:) # = 0, 

A2, = - a,-p(gd)2 m(s) (e-us- 1) ds; 

also, if the velocity fluctuations vanish at y' = & d,  we have 

# = $ ' = O ,  y = i . l .  

The eigenvalue problem so specified is identical to that described in $1 on re- 
placing h by A,. The eigenvalues cr are therefore given by the equation 

where the A, are again solutions of (1.3) or (1.4). 
For a fluid with gradually fading memory, the material function m(s) may 

be assumed to be negative for all values of s, and Im(s)l may be considered to 
decrease monotonically to zero as s increases. If is real and positive, it follows 
that the left-hand side of (3.1) is negative. Since the right-hand side of (3.1) 
is always positive, it is clear that no real, positive value of CT can be a solution: 
that is to say, there can exist no non-oscillatory amplified disturbance. 

If cr is complex, with real and imaginary parts a; and C T ~ ,  the real and imaginary 
partsof (3.I)yield 

(CT; - (T?) Il + 2crr cTi I, = pdZ(cr2, + 0-y (A; + a y ,  

2 q c r i 1 1 - ( 4 - 4 ) 1 2  = 0 ,  

m 

0 
where Il = ~ ~ m m ( ~ ) ( l - e - ~ ~ s c o s c r ~ s ) d s ,  I2 = 1 nz(~)e-~?ssin~~~isds.  (3.2) 

These equations lead to 

Now, let us suppose that there exists an amplified disturbance, for which 
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gT > 0. It is readily seen from (3.2) that both Il and gi I, must be negative for this 
disturbance. But (3.3) reveals that ri12 must have the same sign as a,. This con- 
tradiction proves that no amplified disturbance can exist. 

The integrals Il and I, also furnish an upper limit for the damping rate 
of stable disturbances: for, in order that these integrals should remain 
bounded when v, < 0, exp (0;s) cannot tend to zero faster than m(s). There- 
fore, if m(s)  N exp ( - s / 7 )  for large values of s, where 7 is some constant, the 
maximum damping rate must satisfy the inequality max Igrl < 7-l. 

4. Solution for m(s) = -Ke-s/7 

When the material function m(s) has the particular form 

m(s) = -Ke-"" (s 3 O ) ,  

where K and 7 are positive constants, equation (3.1) has the solutions 

= (27)-l[ - 1 t. Zj(1- B ) ] ,  B = 4 ~ ~ ( A 2 ,  +a2) K / p d 2 .  

If B < 1, the two roots correspond to non-oscillatory, exponentially damped 
disturbances; while, if B > 1, complex conjugate roots occur, which represent 
damped oscillatory disturbances. The greatest- and least-damped modes have, 
respectively, 

= (27)-l if B, > 1, 

where B, is the minimum permissible value of B. Clearly, if B, 2 1, all modes 
decay as exp ( - t / 27 ) .  

We may relate 7, K and B to the material constants p ,  31, and y. Prom results 
(2.2n, b)  wehave 

7 = - 7/31,, K = T,J: /~ ' ,  B = - 4(A; + LXZ) y/pd2. 

Now, the minimum value of h2,+a2 is found to be 9-28, with a = 1.2 and A, 
equal to the lowest root of equation (1.3). Thus, B, = - 37.1y/pd2, which is 
greater or less than unity according as d2 is less or greater than 37.1 I y/p l :  i.e. 
for sufficiently thin layers, all modes decay as exp ( -tro/12yI), but, for thicker 
layers, some non-oscillatory disturbances may decay less rapidly. 

The result for a Newtonian fluid may be recovered on letting y ,  and hence B, 
tend to zero. Then, the two roots for a are - co and - (A: + a,) qo/pd2, the latter 
of which is given by Yih (1963). 
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